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We describe the relationship between the shape of the phase-resetting curve �PRC� and the degree of
stochastic synchronization observed between a pair of uncoupled general oscillators receiving partially corre-
lated Poisson inputs in addition to inputs from independent sources. We use perturbation methods to derive an
expression relating the shape of the PRC to the probability density function �PDF� of the phase difference
between the oscillators. We compute various measures of the degree of synchrony and cross correlation from
the PDF’s and use the same to compare and contrast differently shaped PRCs, with respect to their ability to
undergo stochastic synchronization. Since the shape of the PRC depends on underlying dynamical details of
the oscillator system, we utilize the results obtained from the analysis of general oscillator systems to study
specific models of neuronal oscillators. It is shown that the degree of stochastic synchronization is controlled
both by the firing rate of the neuron and the membership of the PRC �type I or type II�. It is also shown that
the circular variance for the integrate and fire neuron and the generalized order parameter for a hippocampal
interneuron model have a nonlinear relationship to the input correlation.
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I. INTRODUCTION

There has recently been a great deal of interest in the
ability of noise to synchronize limit-cycle oscillators even
when they are uncoupled �1–8�. Two uncoupled limit-cycle
oscillators driven by partially or fully correlated noise that is
not too strong are able to synchronize in the sense that their
phase difference approaches a stationary distribution peaked
around zero. Goldobin et al. �3� and more recently, Nakao et
al. �9� derived expressions for the density of phase differ-
ences when oscillators are driven by partially correlated
white noise. In recent experiments, Galan et al. �10� showed
partial synchronization of two olfactory bulb neurons when
driven by partially correlated synaptic events. If this so-
called stochastic synchronization plays a role in biological
networks, then it would be useful to quantitatively character-
ize the consequences of uncorrelated signals and oscillator
heterogeneity as a function of the details of the oscillators.
For small noise levels, it has been shown �2,3,9� �for white
noise stimuli� that a general limit-cycle oscillator can be re-
duced to a scalar equation for the phase characterized by the
phase-resetting curve �or PRC�. The PRC of an oscillator
describes how the timing of a brief signal changes the phase
of the oscillator. PRCs are easily measured experimentally
and computed numerically for a given model.

Neural and other biological oscillators can be classified
broadly into two types based on their intrinsic dynamics �11�.
That is, as a parameter changes �e.g., the injected current in a
neuron�, the system goes from a stable rest state to periodic
firing through a bifurcation; two such bifurcations character-

ize the majority of tonically spiking neurons. Class-I excit-
able neurons undergo saddle-node on invariant circle bifur-
cations and can theoretically fire at arbitrarily low finite
frequencies whereas class-II excitable neurons undergo ei-
ther subcritical or supercritical Andronov-Hopf bifurcations
and possess a nonzero minimum frequency of firing. Ermen-
trout and collaborators �12,13�, Hansel et al. �14�, and more
recently, Brown et al. �15� have demonstrated that there is a
strong connection between the bifurcation class of a neuron
and the shape of its phase-resetting curve. Class-I excitable
neurons, at least near the bifurcation, tend to have PRCs
which are non-negative; inputs can only advance the phase
�16�. Class-II excitable neurons tend to have PRCs which
have both positive and negative parts �16�. Thus for class-II
excitable neurons, the next spike is advanced or delayed de-
pending on the timing of the subthreshold input. The shape
of the PRC plays an important role in determining whether
coupled neurons are able to synchronize both in models
�12,13,17–19� and in experimentally manipulated neurons
�20–22�. Thus, we expect that the shape of a neural PRC
might also factor in the degree of stochastic synchronization
to noise. Recently, Tateno and Robinson �23,24� used the
phase-resetting curve of both model neurons and cortical
neurons to study how the shape of the PRC affects the rate
that two identical neurons driven by perfectly correlated
noise can synchronize. Galan et al. �25� used finite element
method to contrast the stochastic synchronization of class-I
and class-II neurons to white noise. Interestingly, Tsubo et al.
�26� show that the shape of the PRCs is different in different
layers of the rat motor cortex.

In this paper, we first derive an expression for the density
of phase differences for two identical oscillators driven by
partially correlated Poisson inputs. It turns out that in the
limit of small perturbations, we obtain a result identical to
Nakao’s recent calculation �9�. Secondly, we explore how the
shape of the PRC impacts the relationship between the input
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correlation and synchrony of driven oscillators. Finally, we
explore the effects of the oscillator frequency on stochastic
synchrony as it is known �13� that frequency has a strong
effect on the shape of the PRC.

II. DERIVATIONS

A. Reduction to a phase equation

Consider a general limit-cycle oscillator that is driven by
an input,

dX

dt
= F„X�t�… + G„X�t�,t… .

When G=0, we have a stable periodic solution, X0�t�. As in
Kuramoto �27�, we can introduce a phase variable along
limit cycle � so that we write X�t�=X0(��t�) and obtain

d�

dt
= 1 + Z„��t�… · G„X0���t��,t…

as long as G is small �which is the case we consider here�.
The vector function Z��� describes the phase shift of the
oscillator as a function of the timing �phase� of the stimulus.
Now suppose that X�t� is a neural oscillator which is driven
by a series of pulsatile inputs with amplitude am at times
t1 , t2 , . . .. Since the drive only appears in the voltage variable,
only the voltage component of Z��� matters; this is the in-
finitesimal phase-resetting curve ���� for the neuron. Thus
the phase satisfies

d�

dt
= 1 + �

m

�„��t�…am��t − tm� .

Let �m= tm− tm−1 be the time between impulses. Between in-
puts, the phase �measured in units of time� advances by �m. If
we let �m be the phase right before the mth stimulus, then

�m+1 = �m + �m + am���m� . �1�

We note that � lies between �0,T�, where T is the natural
period of the oscillator. We now have reduced the driven
oscillator to a one-dimensional map. If the pulsatile stimuli
are not delta functions but rather some type of brief synaptic
current, then the map derivation can be valid �or certainly a
good approximation� when the PRC is replaced by another
quantity called the spike-time response curve �STRC�. For
example, if the inputs are time-dependent functions, say, i�t�,
then the PRC is replaced by

�i��� = �
0

�

��� − ���i����d��.

With regular inputs, this replacement is valid as long as i�t�
lasts for a short time compared to the interstimulus interval.
However, for Poisson inputs, the interstimulus interval can
be arbitrarily short, so that using an STRC may not be for-
mally legitimate.

Experimentally, the function ���� is obtained by perturb-
ing the oscillator with small stimuli �say, amplitude a� and
measuring the change in the spike time as follows:

�̂�t,a� � T − Tpert�t,a� .

The function ��t� is defined as

��t� = lim
a→0

�̂�t,a�
a

.

It is called the infinitesimal PRC. For numerically computed
oscillations, ��t� is found by solving the adjoint equation, a
linear equation associated with the limit-cycle solution �28�.

B. Phase distribution equation

We first consider the invariant phase of a single perturbed
oscillator. If �m are taken from a distribution Q��� ��� �0,T��
and am are taken from a distribution with density, f�a�, then
we can readily derive an equation for the density of phases
�m in Eq. �1� using methods of Lasota and Mackey �29�. Let
Pm��� be the density of �m. Then

Pm+1��� = �
−�

� �
0

T

Pm�y�Q„� − y − a��y�…f�a�dy da .

A number of authors have analyzed this model when f�a� is
strongly peaked near a=0, e.g., stimuli are weak; or when
the Poisson rate is very fast. Nakao et al. �30� and Ermen-
trout et al. �31� show that to lowest order, the invariant den-
sity ����� P���� is very close to uniform, �����1 /T. We
will show later, that formally, we have to make a small cor-
rection even for weak inputs, but for Poisson inputs at low
rates, the results are indistinguishable from those obtained by
treating ���� as uniform. For notational simplicity, we will
assume that the period T has been scaled to 1. Consider, now,
N identical uncoupled oscillators, driven with pulsatile
stimuli that are only partially shared. That is, at any given
moment, some oscillators will receive a perturbation, but
others will not. Our goal is to study how synchronous the
oscillators are as a function of the degree of sharing. As the
oscillators are uncoupled, it suffices to analyze a pair. Thus,
consider two such oscillators with identical periods as fol-
lows:

�n+1 = �n + �n + 	an���n� , �2�


n+1 = 
n + �n + 	bn��
n� , �3�

where � and 
 denote the phase of the oscillators at the time
of the nth input. �n is the period of stimulation; specifically,
it is the time between the nth and the n+1th inputs and is
assumed here to be a Poisson variable. The parameter 	
scales the magnitude of the perturbations. We allow for het-
erogeneity in the inputs; some inputs are shared while others
are not. The easiest way to do this is to assume that an ,bn are
either 0 or 1: �an ,bn�� 	�1,1� , �0,1� , �1,0�
 with probabili-
ties q , �1−q� /2 and �1−q� /2, respectively. Thus, q is the
probability that both oscillators receive the same input and
thus is related to the correlation of the inputs. In Appendix A
we show that the correlation is c : =2q / �q+1�. Additional
heterogeneity could come via small differences in the fre-
quencies of the oscillators. At the end of the derivation, we
discuss this point briefly. We assume � to be a periodic func-
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tion with period 1. The phase difference of the oscillators at
the time of the n+1th input, �n=�n−
n can be obtained by
subtracting Eq. �3� from Eq. �2�.

�n+1 = �n + 	„an���n + 
n� − bn��
n�… .

In order to analyze these equations, we will derive an equa-
tion for the density of �n using methods for stochastic maps
in �29�. We note that 
n are random variables which are
independent of �n and furthermore, that an and 
n are inde-
pendent as well since 
n depends only on an−1. Thus, given
the probabilities of an, bn, and 
n, we can compute the evo-
lution of the density for �n and thus the invariant density.

Let pn�x�dx : =Pr(�n� �x ,x+dx�), that is, pn�x� is the den-
sity function for the phase difference �n. With some abuse of
notation, we will suppress the dx, first on the right-hand side
and later on the left-hand side of the definition. Let

E�U�
��: = �
0

1

U�
���
�d
 ,

where U is an arbitrary function of 
 and ��
� is the in-
variant density for 
n. Henceforth, we drop the subscript n
from 
n

pn+1�x�dx = E�Pr„�n + 	an���n + 
� − 	bn��
� = x…�

= qE�pn
11�x,
�dx� + �1 − q

2
�„E�pn

01�x,
�dx�

+ E�pn
10�x,
�dx�… ,

where pn+1
ab �x ,
�dx is the probability that �n+1=x given

�a ,b� and 
. We now compute all the pn
ab�x ,
�dx quantities.

pn
01�x,
�dx = Pr„�n − 	��
� = x…

= Pr„�n = 	��
� + x… = pn„	��
� + x…dx .

Before continuing, we define F�x� : =x+	��x�. For 	 suffi-
ciently small, F�x� is an invertible function.

pn
10�x,
�dx = Pr„�n + 	���n + 
� = x…

= Pr„�n + 
 + 	���n + 
� = x + 
…

= Pr„F��n + 
� = x + 
…

= Pr„�n = F−1�x + 
� − 
… .

Since

Pr„�n + 	���n + 
� � x… = Pr„F��n + 
� − 
 � x…

= Pr„�n � F−1�x + 
� − 
… .

We can write,

pn
10�x,
� =

d

dx
�

0

x

pn
10�s,
�ds

=
d

dx
�

0

F−1�x+
�−


pn�s,
�ds

= pn„F
−1�x + 
� − 
,
…

d

dx
„F−1�x + 
� − 
…

=
pn„F

−1�x + 
� − 
,
…

F�„F−1�x + 
�…
.

Hence,

pn
10�x,
�dx =

pn„F
−1�x + 
� − 
,
…dx

F�„F−1�x + 
�…
.

Lastly,

pn
11�x,
�dx = Pr„�n + 	����n + 
� − ��
�� = x…

= Pr„�n + 
 + 	���n + 
� = x + 
 + 	��
�…

= Pr„F��n + 
� = x + F�
�…

= Pr„�n = F−1�x + F�
�� − 
…

=
pn�„F−1�x + F�
�� − 
…,
�dx

F�„F−1�x + F�
��…
.

Thus, pn�x� satisfies the Frobenius-Perron equation

pn+1�x� = �
0

1

��
�qpn
11�x,
�dx + �1 − q

2
��pn

10�x,
�dx

+ pn
01�x,
�dx�d
 .

The invariant �steady-state� density is found by equating
pn�x� and pn+1�x�, thus we need to solve

p�x� = �
0

1

��
�
q� �pF−1
„x + F�
� − 
…�

F�„F−1�x + F�
��…
d
� + �1 − q

2
�

�� �p„F−1�x + 
� − 
…�
F�„F−1�x + 
�…

+ p„��
� + x…�� . �4�

In order to analyze Eq. �4�, we need to know the distribution
of the phase ��
�. As noted at the beginning of this section,
if the stimuli are small, that is, 	
1, then ��
��1; it is
very close to uniform. In this case, the integrals in Eq. �4� are
simple averages. However, as our calculations for the invari-
ant density p�x� require O�	2� terms, we have to compute
��
� up to order 	. The uniform approximation has been
used in other papers, but, strictly speaking, we need to in-
clude the next order terms. As we will see later on, the higher
order terms in ��
� make almost no difference for Poisson
inputs at low rates. In Appendix B, we derive the expression
for ��
� for Poisson inputs with rate r as follows:

��
� = 1 − 	�r
1 + q

2
„��
� − �̄…� , �5�

where �̄ is the average of ��
�.
Now, let y=F�x�=x+	��x� and express x approximately

in terms of y

x � y + 	y1 + 	2y2

⇒ F�x� = x + 	��x�

� y + 	y1 + 	2y2 + 	��y + 	y1 + 	2y2� .

By Taylor expansion of 	��y+	y1+	2y2� around y we get
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	��y + 	y1 + 	2y2� � 	��y� + 	2���y�y1 + O�	3�

⇒ F�x� � y + 	y1 + 	2y2 + 	��y�

+ 	2���y�y1.

Equating the 	 terms we can solve for y1 and y2 obtaining the
inverse to second order as follows:

x = F−1�y� � y − 	��y� + 	2���y���y� . �6�

We use the result in Eq. �6� to express terms in Eq. �4� in
terms of their expansion in 	. For example, a term such as

p(F��F−1�g��) �which does not appear in Eq. �4�� can be
expressed using Eq. �6� as

p„F��F−1�g��… = p„1 + 	���x�g − 	�g� + 	2��g�g�… ,

leading to

p�1� + 	p��1����g� + 	2�− p��1����g���g� +
1

2
p��1���g�2�

+ O�	3� .

Using the above scheme, Eq. �4� can be expressed as

p�x� = �
0

1

�1 + 	�1�
��
q
p�x� + 	„− p��x�„− ��
� + ��x + 
�… − p�x����x + 
�… + 	2�− p��x����x + 
���
� + p��x�

����x + 
���x + 
� +
1

2
p��x�„��
�…2 − p��x���
���x + 
� +

1

2
p��x�„��x + 
�…2 + p�x����x + 
�„− ��
�

+ ��x + 
�… + „− p��x���
� + p��x���x + 
� + p�x����x + 
�…���x + 
�� + O�	3�� +
1 − q

2

p�x� + 	„− p��x���x + 
�

− p�x����x + 
�… + 	2�p��x����x + 
���x + 
� +
1

2
p��x�„��x + 
�…2 + p�x����x + 
���x + 
� + „p��x���x + 
�

+ p�x����x + 
�…���x + 
�� + O�	3�� +
1 − q

2

p�x� + 	p��x���
� +

1

2
	2p��x�„��
�…2 + O�	3���d
 .

To lowest order, we get

p�x� = �
0

1

p�x�d
 = p�x� .

To order 	, we obtain

0 = qp�x��
0

1

�1�
�d
 +
q + 1

2
�

0

1

p��x���
�

− p��x���x + 
� − p�x����x + 
�d
 .

Since ��
� is the invariant density, by definition

�0
1��
�d
=1. Hence �0

1�1�
�d
=0, where �1 is the first-
order 	 term in the expansion of ��
� �see Appendix B�.
Hence we can write

0 =
q + 1

2
�

0

1

p��x���
� − p��x���x + 
�

− p�x����x + 
�d
 .

Using the periodicity of ��
�, we observe that the right-
hand side is zero independent of p�x�. Henceforth, we denote
p�x� as p for reasons of brevity. To second order we must
have

0 = �
0

1 �− 4qp����x + 
���
� + 2qp����x + 
���x + 
� +
1

2
qp��2�
� − 2qp���
���x + 
� +

1

2
qp��2�x + 
�

− 2qp���x + 
���
� + qp���x + 
���x + 
� + qp���x + 
�2 + 2p����x + 
���x + 
� +
1

2
p��2�x + 
�

+ p���x + 
���x + 
� + p���x + 
�2 +
1

2
p��2�
��d
 − �

0

1

r�q + 1

2
�2

���
� − �̄��„p��
� − p���x + 
�

− p���x + 
�…d
� . �7�
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The second integral arises as a consequence of the order 	
terms in the density function ��
�. Let us define

h�x�: = �
0

1

��
���
 + x�d
 ,

and observe the following:

�
0

1

��
�d
 = �
0

1

��x + 
�d
 ,

�
0

1

���
���
�d
 = − �
0

1

���
�2d
 .

With these definitions, observations, and the fact that ��
�
is periodic, we can simplify Eq. �7� to

0 = − 4qp�h��x� + �1 + q�p�h�0� − 2qp�h�x� − 2qph��x�

+ r
�q + 1�2

4
�h��x�p + „h�x� − h�0�…p�� . �8�

If G�x�=1− 2q
�1+q�

h�x�
h�0� and H�x�= �1+q�

4 �1− h�x�
h�0� �, then Eq. �8� is

equivalent to

�p�x�G�x��� − r�p�x�H�x��� = 0. �9�

This can be integrated to yield a complex expression for the
density function for the phase differences. However, it is
much easier to first consider the low rate approximation
where r=0. Using boundary conditions p�0�= p�1� we can
solve for constants C1 and C2 in the solution to the second-
order differential equation in Eq. �9� as follows:

p�x�G�x� = C1x + C2,

C1 = 0, C2 =
1

�
0

1 1

G�x�
dx

,

where the condition on C1 comes from the periodicity of p�x�
and the condition on C2 comes from the normalization of
p�x�. Thus

p�x� =
C2

1 − c
h�x�
h�0�

,

where we have substituted c=2q / �1+q�, the value of the
input correlation. Thus, for low rate Poisson inputs with a
small PRC we obtain exactly the same equation for the den-
sity of phase differences as was derived by Nakao et al.�9�
for the white noise case. We summarize the result as follows.
For two identical oscillators with input correlation c and
slow Poisson impulses, the density of the phase differences is
given by

p�x� =
N

1 − c
h�x�
h�0�

, �10�

where h�x� is the autocorrelation of the PRC, where N is the
normalization term C2. As c→1, p�x�→��x�, the Dirac delta
function. Thus perfectly correlated noisy oscillators will syn-
chronize with zero phase lag. If c=0, then p�x�=1 is uni-
form.

The full equation �9� with r�0 can be solved exactly but
little intuition can be gained. In Fig. 1, we show the numeri-
cal solution to Eq. �9� for two different values of q and for
various values of the rate r. At the high value q=0.8 corre-
sponding to 80% shared input �c=8 /9�, the effects of the
Poisson rate on the shape of the stationary density p�x� are
minimal. At lower correlation, e.g., 20% shared input �c
=1 /3�, the rate has a stronger effect although it is still quite
small. Heterogeneity in the actual frequencies of the two
oscillators will contribute a term of the form (−p�x��)� to the
left-hand side of Eq. �9�, where � is the difference in the
frequencies of the two oscillators. Thus drift will shift the
peak of p�x�, but will not significantly change the width of
the peak. Thus, we will ignore heterogeneity from now on.

In the remainder of the paper, we explore how the shape
of the PRC affects the degree of synchronization with par-
tially correlated inputs using the small r approximation �10�.
Since Eq. �10� is the same as derived in Nakao et al. �9�,
what we conclude about shape and synchrony for Poisson
inputs will also hold for white noise.

In order to quantify difference in the shapes of the density,
p�x�, we need to introduce some measure of the degree of
synchrony. We will analyze several different measures. The
simplest is

z1 = �
0

1

cos�2�x�p�x�dx . �11�

If p�x� is uniform, then z1=0 and if p�x� is a delta function,
z1=1. The circular variance or vector strength �32� of a dis-
tribution on the circle is defined as

Var��� = 1 − R/n ,

where
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FIG. 1. Steady-state density p�x� for q=0.2 and q=0.8 with
different values of the Poisson rate r.
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R2 = ��
j=1

n

cos 2�� j�2

+ ��
j=1

n

sin 2�� j�2

.

Circular variance characterizes phase locking between oscil-
lators. Since p�x� is symmetric for identical oscillators, the
sine average of the phases vanishes, and our order parameter
is exactly R /n. Thus, the circular variance 1−z1 is a good
measure of the tightness of the distribution on the circle. For
sharp distributions, higher-order circular moments may be a
better measure, e.g.,

zj = �
0

1

cos�2�jx�p�x�dx ,

since z1 measures how close p�x� is to a pure cosine curve.
We use the first n of order parameters, and take the limit as
n→�; we obtain a general order parameter, p�0�−1 �see
Appendix C�. A common measure that is used in neuro-
science is the cross correlation. However, for this to make
sense, we need to map the phase model onto a “spike train.”
Pfeuty et al. �33� consider a simple example Sj�t�, defined to
be 1 /� if � j�t� is within � of �=0 and Sj�t�=0 otherwise.
They show that the cross correlation of two such spike trains
is just p�x�, that is,

�S1�t1�S2�t2��
�S1�t���S2�t��

= p�t2 − t1� .

Thus, a measure of the degree of synchrony is the peak p�0�,
which is related to our generalized order parameter. Like that
parameter, there is no simple way to normalize this cross
correlation.

III. EXAMPLES

A. Comparison with simulations

We first illustrate how well the theory works by compar-
ing Monte Carlo simulations with Eq. �10� and varying the
amplitude of the PRC and the rate of the Poisson process.
Figure 2 shows an example Monte Carlo simulation of Eqs.
�2� and �3� for different Poisson rates and for different PRC
amplitudes using a sinusoidal PRC. We iterate 106 times and
bin the resulting data into 100 bins between −0.5 and 0.5.
Over a range of two orders of magnitude in the Poisson rates,
there is no difference in the shape of the density function.
Similarly, for small amplitudes, there are no differences in
the density either. However, if the amplitude becomes large
enough, then the approximation of uniformity for the phase
of individual oscillators breaks down and Eq. �10� becomes
inaccurate. For example, Fig. 2�d� shows the density of the
oscillator phase in Eq. �2� as the amplitude of the PRC in-
creases. Finally, with a modest amplitude, Eq. �10� provides
a precise approximation of the Monte Carlo histogram as
shown in Fig. 2�c�.

B. Shape matters

We use the terms “type I” and “type II” to refer to the
PRCs of class-I and class-II neurons, respectively, and use
1−cos��� and sin��� as their respective idealizations. Theo-

retical predictions for the probability density functions of
phase differences for classical type-I and type-II PRCs can
be obtained from Eq. �10�. For two sample values of q, we
show that type-II oscillators have a narrower distribution of
phase differences around zero, compared to type I as can be
seen in Fig. 3. Note that both these oscillator types will syn-
chronize at identical rates if q=1 since their Lyapunov expo-
nents are the same �2�. Using Eq. �11� we calculated the
circular variance of the distribution obtained from Eq. �10�.
Since physical systems like postsynaptic neurons have to ac-
commodate jitter around a zero difference in the presynaptic
spike times, we calculated the probability that the phase dif-
ference lies within a 0.2 T interval around zero, i.e.,
Prob��� �−0.1,0.1��. In Fig. 4�b� and all subsequent plots,
Prob��� �−0.1,0.1�� is plotted after subtracting its value at
q=0, hence the plot purely reflects the contribution of non-
zero q. In Fig. 4�a�, it can be seen that the circular variance
of the phase differences for type-II oscillators is lower
�higher values of the order parameter z1� than that for type-I
oscillators for all possible values of q. In Fig. 4�b�, it can be
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FIG. 2. �Color� Monte Carlo simulations for ��x�=a sin 2�x,
with q=0.75 and Poisson rate r. 106 iterations are run and binned in
100 bins on the interval �−0.5,0.5�. �a� Independence of the rate for
r=0.1, 1 , 10 at a=0.025. �b� Independence of the amplitude for
small amplitudes, a=0.0125, 0.025, 0.05 at r=1. �c� Comparison
of the r=1, a=0.025 case for q=0.75 with the density from Eq.
�10�. �d� Larger amplitudes result in more nonuniformity in the
distribution of individual oscillator phases at rate r=1.
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FIG. 3. �Color online� Simulation results showing distribution of
phase differences for type-I and type-II PRCs, at two different input
correlations �q=0.3 and q=0.9�. Probability is plotted along the
ordinate and the phase differences on the abscissa.
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seen that there is a higher probability for type-II oscillators
to stay closer in phase than type-I oscillators. We note that
choice of the length of the interval is arbitrary and the rela-
tionship between the curves is conserved at other choices of
interval lengths. Taken together, these three results show that
for any given input correlation c�1, type-II oscillators have
a higher probability of undergoing stochastic synchronization
compared to type-I oscillators for nonzero q. This observa-
tion supports the hypothesis that the shape of the PRC can
determine the degree to which uncoupled oscillators can syn-
chronize under the influence of noise.

For small values of input correlation, c, we can get an
approximation for the order parameter as well as the peak of
the density function. For c small,

p�x� =
N

1 − ch�x�/h�0�
� N„1 + ch�x�/h�0�…

from which we find that

N � 1 − c�
0

1

h�x�/h�0�dx: = 1 − c�h�/h�0� ,

so that

p�0� − 1 � c„1 − �h�/h�0�… .

Thus, the peak of the probability distribution function and
the generalized order parameter are maximized when the av-
erage value of h�x� is zero. Recalling the definition of h�x�,
we obtain the concise formula for small correlations as fol-
lows:

p�0� − 1 � c
1 −
���2

��2�� . �12�

Holding the L2 norm of � constant ���2�, we see that the dc
component of � is what hurts the ability to synchronize at
low input correlation. Type-II oscillators have a lower dc
component and thus synchronize more readily.

C. Dependence on firing rate

We also investigated the influence of firing rate on sto-
chastic synchronization. PRCs for a model neuron obtained
in low and high firing frequency regimes �13� were fit using
a polynomial function xn�x−1�m. Both PRCs were type I, i.e.,
the membership of the PRC remained type I in both the
frequency regimes. Using these fits, we calculated the prob-
ability density of the phase differences and 1-circular vari-
ance. The results are plotted in Fig. 5. It can be seen that for
higher firing rate �corresponding to n=2, m=1� there is a
broader distribution of phase difference around zero and also
a higher circular variance �lower values of the order param-
eter z1�. These results suggest that increase in firing fre-
quency decreases the probability of synchronization due to
stochastic input for a type-I PRC.

Firing rate dependence of stochastic synchronization was
investigated in another model neuron, specifically the
Morris-Lecar �ML� system. The parameters for the model
can be tuned such that the model displays either a type-I or
type-II PRC. In both these regimes the PRC has a tendency
to become more negative with an increase in the input cur-
rent. For a ML system with a type-I PRC under moderate
current conditions, this translates to a conversion from a
classic type-I to a type-II PRC. A type-II ML system on the
other hand continues to experience an increase in its negative
part with an increase in input current. Figure 7 shows a ML
system with a type-I PRC. It can be seen that there is nar-
rowing of the distribution of phase differences accompanied
by lower circular variance for the system firing at a higher
frequency with a type-II PRC. A similar transition can be
observed for a ML system with parameters set to a type-II
PRC regime �Fig. 7�, but the magnitude of change is much
less, since the system has a type-II PRC at the outset as can
be seen in Figs. 6 and 7.

The leaky integrate and fire �LIF� model is used widely as
a first approximation to continuous and realistic neuronal
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models, thus, it is important to understand the behavior of
LIF neurons in a stochastic synchronization paradigm. In or-
der to derive the order parameter for two LIF neurons we
first obtained the PRC using the adjoint method. Briefly, if

dX

dt
= F�X�

is a differential system in Rn and X0�t� is its T-periodic limit-
cycle solution, then x=X0�t� is a point on the limit cycle at
time�phase� t. The PRC is given by the function Z��� , where

Z��� = �X„��X0����… ,

and ��x� is the phase function that relates a point on the
limit cycle to its phase � and is defined as

�„X0���… = � . �13�

Differentiating Eq. �13� with respect to � gives a relation
between the PRC and F�X�,

Z���TdX0

d�
= 1.

We derived the PRC for the LIF using the above formulation.
Since we are in one dimension, this implies

Z��� =
1

dX0

d�

.

The LIF in its most general form is given as

dV

dt
= − V + I . �14�

Solving Eq. �14� we get

V�t� = I − Ie−t. �15�

The PRC is obtained by taking the reciprocal of the deriva-
tive of Eq. �15� with respect to t. Therefore,

Z��� =
e�

I
.

We calculated the autocorrelation function h�x� of the PRC
as follows:
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FIG. 6. Transformation of the PRC for the ML system in differ-
ent frequency regimes. �a� ML system in type-I regime with an
injected current of 50 �A �threshold around 40 �A�. The PRC is
almost completely type-I �b� PRC of ML system in A after the
injected current is increased to 100 �A. The PRC is transformed to
the type-II regime �c� ML system in type-II regime with an injected
current of 120 �A �threshold around 100 �A�. The PRC is type-II
�d� transformation of PRC in C upon increasing injected current to
220 �A.
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FIG. 7. �Color online� Simula-
tions showing the effect of firing
frequency on stochastic synchrony
in type-I and type-II Morris-Lecar
systems. The different input cur-
rents were I=50,100 for type I
and I=120,220 for type II, q
=0.75 for �a� and �d�.
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h�x� = �
0

P−x

eyex+ydy + �
P−x

P

eyex+y−Pdy

=
1

2
�eP−x�eP − 1� + ex�eP − 1�� .

For calculating the order parameter for different periods we
used the following simplifications:

H�x� =
h�x�
h�0�

=
eP−x + ex

eP + 1
. �16�

In order to parametrize the phase x we replace it with sP,
where s� �0,1� and we can write Eq. �16� as

H�s,P� =
e−Ps + eP�s−1�

1 + e−P . �17�

Using this we calculated the order parameter for different
periods in Fig. 8. It can be observed that the order parameter
is a nonmonotonic function of the period of oscillation. We
plot the order parameter as a function of period for q=0.75
in Fig. 9. The position of the maxima of the order parameter
curves depend on the period of oscillation. We show the
order parameter obtained for a range of values for q and P in
Fig. 10.

The Wang-Buzsaki model is a commonly used model for
cortical interneurons �34�. It has a very wide range of fre-
quencies and thus we investigated how this model is able to
synchronize under a stochastic synchronization paradigm at

different frequencies. The adjoint was numerically calculated
at different frequencies and the slope of the generalized order
parameter with respect to input correlation was calculated as
given in Eq. �12� and plotted in Fig. 11. It can be seen that
the rate of change for the generalized order parameter has a
sublinear relationship with respect to input correlation c,
through almost the entire range of the neuron’s firing fre-
quency except possibly at the neuron’s highest firing fre-
quency where it reaches a value of 1, hence becoming linear.
Additionally, this rate of change of the generalized order
parameter with respect to the input correlation c, has a non-
monotonic relationship with respect to the firing frequency
of the neuron wherein, in the lower frequency range it de-
creases from a value 0.5, close to 0 Hz to about 0.29 at
around 33 Hz and then increases up to a value of 0.75 at
around 400 Hz followed by a rapid increase to a value of 1 at
the neuron’s highest firing frequency around 500 Hz.

IV. DISCUSSION

In this work, we analyzed a system of identical, un-
coupled limit-cycle oscillators receiving weak, partially cor-
related, Poisson distributed inputs. We derived an expression
�9� for the probability density function of the phase differ-
ence between the two oscillators. Numerical simulations of
Eq. �9� suggest a relative independence of the phase distri-
bution with respect to the input rates at moderate to high
input correlation values �Fig. 1� and weak inputs �Fig. 2�.
Thus we analyzed Eq. �9� under the assumption of low rates,
which makes it possible to gain an intuitive understanding of
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the mechanism of PRC-shape dependent stochastic syn-
chrony. Our results suggest that the shape of the PRC is
crucial in controlling the magnitude of stochastic synchrony
realized by the system.

By adopting circular variance as a measure of synchrony
we show that type-II PRCs tend to show higher synchrony
than type-I PRCs at all values of input correlation �Fig. 4�.
This result is also reflected identically in another measure of
synchrony where we simply integrate the probability density
between arbitrary upper and lower limits around zero. These
results taken together suggest that the phase differences for
oscillators with type-II PRCs are more densely clustered
around zero compared to systems with type-I PRCs, which
show longer tails. In other words, systems with type-II PRCs
spend more time close to each other than those with type-I
PRCs. We also show that the generalized order parameter,
which is simply the sum of the correlations between the
phase distribution function and all modes of cosine, is linear
in the input correlation, for weak correlations.

In real neurons the shape of the PRC can be modulated by
the firing frequency �13�. This modulation is mediated by
slow adaptation processes, mainly slow potassium currents,
which increase with an increase in firing frequency. But this
increase in the slow potassium current also decreases the
fractional contribution of the transient potassium currents at
the start of the interspike interval �ISI�, which causes an
otherwise skewed PRC at moderate firing frequencies to be-
come less skewed at higher frequencies. Our investigation
suggests that synchronization is affected by firing frequency
and decreases at higher frequencies �Fig. 5�. That this differ-
ence in synchronization is observed without the change in
the membership of the PRC �type I at both frequencies� only
solidifies the role of subtle differences in the shape of PRC,
in this case the degree of skewness, in dictating the system’s
propensity for undergoing stochastic synchronization.

In light of the above results, we investigated a system
whose PRC undergoes substantial modulation in shape and
changes membership at higher frequencies. Our results from
simulations using the Morris-Lecar model show that stochas-
tic synchrony increases with firing frequency as the PRC
changes from a type I to type II. In contrast, when the system
starts out in a type-II regime, the change in the circular vari-
ance due to an increase in firing frequency is minimal. A
recent study, set in a similar setting, has shown that the out-
put correlation of spike counts between LIF neurons in-
creases with firing frequency �35�. Our results show a non-
monotonic relationship between circular variance of the
phase differences and firing frequency. The circular variance
of the phase difference does decrease with an increase in
firing frequency but only up to a point beyond which it in-
creases with frequency. We also note that the LIF has a
type-I PRC at all firing frequencies. At this point the interre-
lationship between these different measures is unclear. A
similar firing rate dependence was also observed for the
Wang-Buzsaki model. The relationship between the slope of
the generalized order parameter with respect to input corre-
lation �12� and the firing rate was nonmonotonic Fig. 11,
hence the relative increase in the generalized order parameter
with respect to input correlation will be determined by the
frequency of firing, similar to the observations in LIF. Such a

firing rate dependent spike-time cross correlation has been
reported in a recent study �36� �Fig. 8�.

Our results suggest a strong effect of the shape of PRC on
the synchronization properties of the cell. The shape of the
PRC is determined by the variety of ion channels that define
the dynamical behavior of a neuron. The relative contribu-
tion to membrane voltage of these ion channels depends on
the firing rate of the neuron. We have described a mechanism
by which these interactions might occur and finally be re-
flected in the spike-time correlation of general oscillator sys-
tems.
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APPENDIX A: INPUT CORRELATION

Consider a Poisson process with rate r. For each spike let
c be the probability that an oscillator receives that particular
spike. The effective rate of the Poisson process for the neu-
ron is just cr. Consider a pair of neurons. The probability that
they both receive the given spike is c2 and the probability
that one receives a spike and the other does not is c�1−c�.
Thus, c2 is the fraction of shared inputs and c is the correla-
tion of the inputs. �1−c�2 is the probability that neither re-
ceives an input. For our problem, as the oscillators are iden-
tical, if neither receives input, then their phase difference
remains the same until the next input comes in. Thus, the
only cases in which an event occurs that changes the phases
are those in which at least one oscillator receives an input.
The fraction of relevant events �those in which at least one
oscillator gets an input� with shared inputs is c2 / (1− �1
−c�2)=c / �2−c�. Recalling that q is the fraction of shared
inputs, we see that q=c / �2−c� or, c=2q / �1+q�. Thus, the
quantity 2q / �1+q� is the input correlation.

APPENDIX B: INVARIANT DENSITY

The invariant density ��x� satisfies

��x� =
1 − q

2
�

0

1

Q�x − y���y�dy

+
1 + q

2
�

0

1

Q„x − y − 	��y�…��y�dy .

Here Q�x� is the interspike interval or the waiting time den-
sity for a Poisson distribution with rate r modulo 1,

Q�x� =
re−rx

1 − e−r .

For 	=0, ��x�=1, so we expand in terms of 	 to get the next
order: ��x�=1+	�1�x�+¯. The next order equation is

�1�x� = �
0

1

Q�x − y��1�y� −
1 + q

2
�

0

1

Q�x − y����y�dy ,

along with the condition that the mean value of �1�x� is zero
�since the integral ��x� must be one for normalization�. For
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general Q�x� we can solve for �1�x� by using a Fourier ex-
pansion. Specifically, write

�1�x� = �
n

bne2�inx,

Q�x� = �
n

qne2�inx,

��x� = �
n

dne2�inx.

We must then have

bn = −
1 + q

2

2�inqn

1 − qn
dn.

For a Poisson process with rate r,

qn =
r

r + 2�in
,

so that

bn = − r
1 + q

2
dn,

as long as n�0. For n=0, b0=0 since the next order terms
must have zero mean. Thus,

�1�x� = − r
1 + q

2
���x� − �

0

1

��x�dx� .

APPENDIX C: ORDER PARAMETERS

Consider the order parameters,

zj = �
0

1

p�y�cos 2�jy dy, j � 1.

If p�x� is uniform, then each of these vanishes and if p�x� is
a delta function, then zj =1. Consider the sum of these order
parameters as a measure of the synchrony in all modes as
follows:

Z = � lim
N→�

�
j=0

N

zj − 1.

We have included z0 in the sum and subtracted 1 from the
total to compensate. Now, we formally rearrange the sum

Z = �
0

1

p�x�
 lim
N→�

�
j=1

N

cos 2�jx�dx − 1.

The sum in the brackets forms a “delta sequence” �that is, in
the limit, this sum goes to a Dirac delta function� �cf. �37��.
Thus, Z= p�0�−1, exactly as derived above. For this reason,

we treat p�0�−1, a generalized order parameter, as a measure
of the local synchrony and correlation.

APPENDIX D: MODEL EQUATIONS

1. Morris-Lecar model

Cm
dV

dt
= gL�VL − V� + gKw�VK − V� + gCam��vCa − V� + I ,

dw

dt
= �w�w� − w� ,

m��V� = 0.5„1 + tanh��V − V1�/V2�… ,

w��V� = 0.5„1 + tanh��V − V3�/V4�… ,

�w��,V� = � cosh„0.5�V − V3�/�V4�… .

For a type-II model, VK=−84, VL=−60, VCa=120, gK=8,
gL=2, gCa=4, Cm=20, V1=−1.2, V2=18, V3=2, V4=30, �
=0.04. For a type-I model we changed the following param-
eters: V3=12, V4=17, �=0.0667.

2. Wang-Buzsaki model

Cm
dV

dt
= gL�VL − V� + gNam�

3 h�VNa − V�

+ gK�n4��VK − V� + I ,

m� = am/�am + bm� ,

am�V� = − 0.1�V + 35�/„exp�− 0.1�V + 35�� − 1… ,

bm�V� = 4 exp„− �V + 60�/18… ,

dh

dt
= �„ah�V��1 − h� − bh�V�h… ,

ah�V� = 0.07 exp„− �V + 58�/20… ,

bh�V� = 1/„exp�− 0.1�V + 28�� + 1… ,

dn

dt
= �„an�V��1 − n� − bn�V�n… ,

an�V� = − 0.01�V + 34�/„exp�− 0.1�V + 34�� − 1… ,

bn�V� = 0.125 exp„− �V + 44�/80… ,

Cm = 1, gL = 0.1, VL = − 65, gNa = 35, VNa = 55,

� = 5, gK = 9, VK = − 90.
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